Best polynomial approximation and Bernstein polynomial approximation on a simplex

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A method to obtain the best uniform polynomial approximation for the family of rational function

In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...

متن کامل

The generalized Bernstein problem on weighted Lacunary polynomial approximation

We obtain a necessary and sufficient condition for the lacunary polynomials to be dense in weighted Lp spaces of functions on the real line. This generalizes the solution to the classical Bernstein problem given by Izumi, Kawata and Hall. © 2005 Elsevier Inc. All rights reserved.

متن کامل

Polynomial Approximation

Polynomials are very simple mathematical functions which have the flexibility to represent very general nonlinear relationships. Approximation of more complicated functions by polynomials is a basic building block for many numerical techniques. This article considers two distinct but related applications. The first is polynomial regression in which polynomials are used to model a nonlinear rela...

متن کامل

The best uniform polynomial approximation of two classes of rational functions

In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.

متن کامل

A Polynomial Time Approximation

In this paper we study the following problem: Given n strings s1; s2; : : : ; sn, each of length m, nd a substring ti of length L for each si, and a string s of length L, such that max n i=1 d(s; ti) is minimized, where d(;) is the Hamming distance. The problem was raised in 6] in an application of genetic drug target search and is a key open problem in many applications 7]. The authors of 6] s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae (Proceedings)

سال: 1989

ISSN: 1385-7258

DOI: 10.1016/s1385-7258(89)80002-2